Select Page

China Custom CZPT Coupler Insert Knuckle CZPT Zimmatic Reinke CZPT Irrigation inline helical gearbox

Product Description

UMC is the industry leader in gearbox technology. Over our 40 year history we have introduced many industry changing gearboxes such as the patented TNT gearbox, the 740, the 760, the 775 and more. We continue to define and redefine industry standards for gearbox performance, quality, features and technology. Our gearboxes are purpose built to do the job. Never over-engineered.


The UMC Standard Coupler is a shock-attenuating drive connection between the gearmotor and final drive gearbox. It has been the industry standard for many years on new systems from Original Equipment Manufacturers. It is available in a wide variety of sizes and configurations to fit any brand of center pivots and laterals.

The UMC Standard Coupler features an alignment rod that helps keep concentric positioning under extreme loads. The added strength is ideal in heavy soils and on systems with larger-diameter tires.

Features and Benefits

  • Proven service record of over 25 years
  • Designed for extreme duty environments
  • Ideal for high torque low speed conditions
  • Alignment rod holds insert in place and coupler in alignment under extreme or sudden loads.
  • Designed for use in extreme duty environments: heavy soils; Larger tire diameter; Higher torque motors; and stronger gearboxes.
  • Designed to be the fusible link in the drive train to prevent failure in final drive gearbox or other hardware in problematic field conditions
  • Urethane insert offers an environmentally stable material with better resistance to UV rays and chemicals
  • Grooved insert option converts any coupler assembly for a towable application.
  • UMC SQUEX-bolts (Square-Neck, Hex-Head) creates unique bolt anti-rotation feature that allows for faster single wrench assembly in Field.
  • High torque conditions capture and compress insert lobes instead of shearing them.
  • Shock attenuating puck insert allows for softer starts and stops
  • Ideal for high-torque, slow-speed conditions with severe back driving.
  • Curved pressure pads compensate for out of line conditions
  • One year limited warranty.

The UMC CX Coupler is a shock-attenuating drive connection between the gearmotor and final drive gearbox. Its design reduces set up time for new center pivots and laterals. Similarly, it is the perfect compliment for towable systems due to the ability to control disengagement at the gearbox. From the service tech’s perspective, it is a must-have solution because this 1 coupler fits all brands of center pivots and laterals

Features and Benefits

Our patented, preassembled drive connection fits a 3/4″, 7/8″, and 1″ drive shafts as well as metric sizes. It features 3 3/8″ SQUEX bolts for easy 1 wrench installation.

  • Units come pre-assembled
  • Saves time in the field
  • Meets and exceeds the existing CZPT coupler performance
  • Designed to fit all shaft sizes- standard and metric
  • UM stabilised Urethane puck
  • Easily converts from Non-Towable to Towable.
  • Centering rod for maintaining alignment at CZPT torque.
  • UMC SQUEX- Bolts(Square Neck- Hex Head) for easy 1 wrench installation.

UMC is the industry leader in gearbox technology. Over 37 year history they have introduced many industry changing gearboxes such as the patented TNT gearbox, the 740, the 760, the 775 and more. CZPT continue to define and redefine industry standards for gearbox performance, quality, features and technology. CZPT gearboxes are purpose built to do the job. Never over-engineered.UMC stands behind its products and is committed to manufacturing the best products for a global market.


Application: Motor, Agricultural Machinery, Agricultural
Function: Speed Reduction
Hardness: Hardened
Type: Worm and Wormwheel
Material: Cast Iron
Manipulate Way: Semi-Automatic Manipulation


Customized Request

helical gearbox

What Is a Helical Gearbox?

Basically, a gearbox is a rotating circular machine part that consists of toothed components, which mesh together. Its function is to transfer speed and torque to other parts of the machine. It is also similar to a lever, and operates on the same principle.

Double helical gears

Having a helical gearbox has many advantages, including higher efficiency, high strength, and a superior gear system. However, it has its drawbacks. One of these drawbacks is the axial thrust. Axial thrust is not a problem with single helical gears, but it is a problem with double helical gears.
In double helical gears, there are two sets of teeth that are arranged in a V-shape. In one set of teeth, there is a groove that enables the axial force to be cancelled out. The groove eliminates the need for thrust bearings and allows for efficient handling of high capacity power transmission.
Aside from the axial thrust, there are also issues with face contact. Asymmetric load sharing and oscillation put substantial alternating loads on the shaft bearings. These alternating loads can lead to early bearing failure.
Fortunately, helical gears are smoother than spur gears, which means they can withstand more load. They also have greater pitch circle diameter than spur gears. However, they are limited in their scope. The pitch error distribution on the helical gears is typically limited to 50 mm peak-to-peak amplitude. It is important to control the phase difference of oncoming gears with high accuracy.
Typically, the helical gears that are used in a gear box are assembled from the same module. This allows for interchangeability of components and economical construction. A normal module set can use the same tooth-cutting tools that are used for spur gears.
Double helical gears are used in power transmission in fluid pumps and gas turbines. They are also commonly used in planetary reduction gear boxes for engines in civil aviation.
Generally, double helical gears are larger than single helical gears. They are typically generated from a special generator. They are also more expensive.
However, manufacturers are looking to find gears that are more convenient to use. One solution is to manufacture double helical gears on a multi-tasking machine tool. This allows the gear to be machined in complicated shapes.
The multi-tasking machine tool can also modify the tooth surface. This is useful for 3D printing helical gears with a high level of accuracy.helical gearbox

Crossed-axis helical gears

Several factors affect the performance of crossed-axis helical gears. One of the important factors is the position of the gears on the cross shaft. The gears will not perform properly if they are not oriented in a different direction.
Crossed-axis helical gears have a special situation, in which they will not function properly if the gears are oriented in the same direction. This is especially true for automobile oil pump/distribution shafts. Depending on the situation, gears will operate as a normal helical gear or as a spur gear.
Compared to spur gears, crossed-axis helical gears have relatively higher capacity. However, the transverse contact ratio of these gears is reduced. This decrease is dependent on the pressure angle. The pressure angle affects the curvature radii of the teeth. In addition, the length of the contact line is reduced. This shortens the efficiency of the gear.
Helix angle of crossed-axis helical gears is 45 degrees. It may be a left-handed or a right-handed gear. The pitch circle diameter of a helical gear may be big compared to that of a spur gear. This is due to the fact that the gears are cut at an angle to the shaft.
In the axial direction, the meshing of helical gears is very similar to spur gears. However, there are a few design rules to optimize these gears.
The first rule is that the gears must be staggered in opposite directions. If the gears are not staggered, the contact lines cannot be changed.
The second rule states that the pitch of a helical gear is dependent on its helix angle. It is possible to calculate the pitch circle of a helical gear, by integrating along the face width. In addition, the length of the contact lines decreases as the pressure angle increases. However, this decrease is not as large as that of a spur gear.

Right angle helical gears

Choosing a right angle helical gearbox can be difficult. With so many types, sizes, and configurations to choose from, it can be difficult to figure out which one is right for your application. The key to choosing the right gearbox is understanding your application and what factors are most important to you.
For example, if you are looking for a gearbox that can be used in a high-speed, high-torque application, the most important consideration is the efficiency of the product. Right-angle gearboxes are compact and easy to maintain, making them ideal for high-torque applications.
Some applications that require high-torque gears include pulp and paper manufacturing, food processing, mining, and car washes. Some of the advantages of right angle gears include high efficiency, low maintenance, and low noise. If you are in the market for a right angle helical gearbox, make sure to select a supplier that can provide you with a wide range of options.
Right-angle helical gearboxes come in several different bevel configurations. Spiral bevel gears require precision and are difficult to manufacture. However, they can be used interchangeably. Spiral miter gears are designed to rotate in the same direction as the input shaft, which helps ensure a smooth, direct transfer of power.
If you are considering a helical gearbox for a high-speed application, you will need to know your preferred input/output ratio. The standard ratios are 1:1 and 2:1. If you need a step-up ratio, you can install an additional output shaft opposite the input shaft.
Other benefits include lower running noise, superior strength, and durability. Because they are made of larger teeth, helical gears are less likely to wear out. Also, helical gears provide higher power carrying capacity.
To determine which type of right angle gearbox is best suited for your application, you should discuss your needs with your supplier. They should be able to offer a wide range of options, including custom solutions. They should also provide you with a list of past clients and online reviews.
To find a right angle helical gearbox that can meet your needs, it’s important to understand the various design features. For example, you should make sure that your gearbox has a self-locking capability, which means that the load cannot drive the worm. Having a self-locking gearbox also means that you do not need to install a braking system.helical gearbox

Spiral teeth

Using helical gearboxes to drive a motor car or truck is an efficient method of power transmission. However, the efficiency of this method depends on the helix angle of the gear. The helix angle is the angle that the gear teeth are cut at.
Helical gearboxes may be of different helix angles, depending on the specific gear set. The helix angle can vary between 15 and 30 degrees. This is important because the helix angle has a significant effect on the position of tooth contact. If the contact is not in a proper position, then there will be a large amount of vibration. This will affect the speed of the gear.
Helical gearboxes can be of two types: crossed axis and parallel axis. Crossed axis gears are usually used to connect parallel shafts. They have the same center gap as spur gears. On the other hand, parallel axis gears are usually used to drive a motor. The difference between the two types of gearboxes is their design and arrangement.
In addition to the helix angle, the gears may have different fillet, teeth, and radius. This means that the gear will have different NVH characteristics. In addition, there are different types of spiral teeth that may be used in the gearbox.
Hypoid gears are also similar to spiral bevel gears, but they differ in that the axes of the gear shaft do not intersect the axis of the hypoid gear. The hypoid gear exerts a very high thrust load on the bearings.
When compared to a straight bevel gear, the hypoid gear experience a smoother, less noisy operation. They also produce less shock loading.
Spiral bevel gears are also designed to produce less vibration. They are also more cost-effective. However, they require a larger diameter to transmit the same torque. This can lead to a reduced mechanical efficiency and lower fuel economy.
The best spiral bevel gears can carry a higher thrust load than straight teeth. This is why they are preferred for applications that require heavy load efficiency.
They are also appreciated for their NVH characteristics. They are also a quieter option for applications that require high speed. Helical gears can be used in many different industries. The food, automotive, and oil industries are examples of these types of gears.
China Custom CZPT Coupler Insert Knuckle CZPT Zimmatic Reinke CZPT Irrigation   inline helical gearboxChina Custom CZPT Coupler Insert Knuckle CZPT Zimmatic Reinke CZPT Irrigation   inline helical gearbox
editor by CX 2023-11-14